Ученые ПНИПУ выяснили, как повысить точность определения характеристик звукопоглощающих конструкций в зависимости от уровня шума
13.10.2023
Современный человек ежедневно подвергается воздействию высоких уровней шума от различных устройств: от кондиционеров до двигателей самолета. Для снижения шума, распространяющегося в каналах воздуховодов или энергетических установок, каналы облицовывают звукопоглощающими конструкциями (ЗПК). Основной характеристикой ЗПК в этом случае является импеданс – полное акустическое сопротивление. Оптимальное значение импеданса обеспечивает максимальное затухание звуковых волн в канале. Существует ряд полуэмпирических моделей, позволяющих рассчитать импеданс. Ученые ПНИПУ выяснили, какие модели наиболее точно описывают импеданс в зависимости от разных уровней шума.
Исследование опубликовано в журнале «Acoustics», 2023. Работа проводилась при финансовой поддержке Российского научного фонда и Пермского края.
Каналы волноводов, по которым распространяется шум преимущественно на одной частоте (например, гул от вентиляторов и компрессоров), облицовываются звукопоглощающими конструкциями (ЗПК) локально-реагирующего типа. Эти конструкции представляют собой изолированные друг от друга ячейки разной геометрической формы, перекрытые тонкими перфорированными листами. Акустический импеданс зависит как от геометрических характеристик конструкции (высота ячеек, доля перфорации, толщина перфорированной пластины и др.), так и от внешних условий (частота звука, уровень звукового давления, скорость потока в канале и др.). Расчеты по полуэмпирическим моделям позволяют установить, какая геометрия ЗПК обеспечит нужное значение импеданса при заданных внешних условиях.
Ученые Пермского политеха рассмотрели три модели расчета импеданса (Соболева, Гудрич, Эверсмана) и выяснили, какая из них обладает наибольшей точностью в своем диапазоне уровней звукового давления. Для этого они напечатали на 3D-принтере образцы звукопоглощающих конструкций с ячейками в форме сот и некоторым количеством отверстий в определенных ячейках. На образцы воздействовали разными уровнями звукового давления в диапазоне от 100 до 150 децибел.
Для проведения эксперимента ученые разработали специальный программный код – он управляет генерацией и записью сигналов, подбирает нужное напряжение для динамика так, чтобы при разных частотах обеспечить необходимое звуковое давление на поверхности образца ЗПК.
Политехники выяснили, что при низком уровне звукового давления импеданс лучше описывает модель Соболева; при высоком – модели Гудрич или Эверсмана (в зависимости от геометрических характеристик конструкции).
– Таким образом, если уровень звукового давления меняется вдоль облицовки, то для более точного описания импеданса на каждом участке ЗПК необходимо использовать свою полуэмпирическую модель, поскольку модели, одинаково хорошо описывающей импеданс при всех условиях, на данный момент не существует, – подводит итог кандидат технических наук, доцент кафедры ракетно-космической техники и энергетических систем ПНИПУ Вадим Пальчиковский.
¬Активное использование звукопоглощающих конструкций, настраиваемых на оптимальный импеданс, актуально во всех сферах деятельности, где человек подвергается воздействию шума, излучаемому из волноводов (например, трактов энергоустановок). Результаты исследования пермских ученых будут полезны для повышения точности настройки звукопоглощающих конструкций на эффективное снижение шума.
Исследование опубликовано в журнале «Acoustics», 2023. Работа проводилась при финансовой поддержке Российского научного фонда и Пермского края.
Каналы волноводов, по которым распространяется шум преимущественно на одной частоте (например, гул от вентиляторов и компрессоров), облицовываются звукопоглощающими конструкциями (ЗПК) локально-реагирующего типа. Эти конструкции представляют собой изолированные друг от друга ячейки разной геометрической формы, перекрытые тонкими перфорированными листами. Акустический импеданс зависит как от геометрических характеристик конструкции (высота ячеек, доля перфорации, толщина перфорированной пластины и др.), так и от внешних условий (частота звука, уровень звукового давления, скорость потока в канале и др.). Расчеты по полуэмпирическим моделям позволяют установить, какая геометрия ЗПК обеспечит нужное значение импеданса при заданных внешних условиях.
Ученые Пермского политеха рассмотрели три модели расчета импеданса (Соболева, Гудрич, Эверсмана) и выяснили, какая из них обладает наибольшей точностью в своем диапазоне уровней звукового давления. Для этого они напечатали на 3D-принтере образцы звукопоглощающих конструкций с ячейками в форме сот и некоторым количеством отверстий в определенных ячейках. На образцы воздействовали разными уровнями звукового давления в диапазоне от 100 до 150 децибел.
Для проведения эксперимента ученые разработали специальный программный код – он управляет генерацией и записью сигналов, подбирает нужное напряжение для динамика так, чтобы при разных частотах обеспечить необходимое звуковое давление на поверхности образца ЗПК.
Политехники выяснили, что при низком уровне звукового давления импеданс лучше описывает модель Соболева; при высоком – модели Гудрич или Эверсмана (в зависимости от геометрических характеристик конструкции).
– Таким образом, если уровень звукового давления меняется вдоль облицовки, то для более точного описания импеданса на каждом участке ЗПК необходимо использовать свою полуэмпирическую модель, поскольку модели, одинаково хорошо описывающей импеданс при всех условиях, на данный момент не существует, – подводит итог кандидат технических наук, доцент кафедры ракетно-космической техники и энергетических систем ПНИПУ Вадим Пальчиковский.
¬Активное использование звукопоглощающих конструкций, настраиваемых на оптимальный импеданс, актуально во всех сферах деятельности, где человек подвергается воздействию шума, излучаемому из волноводов (например, трактов энергоустановок). Результаты исследования пермских ученых будут полезны для повышения точности настройки звукопоглощающих конструкций на эффективное снижение шума.
Марина Осипова © Вечерние ведомости
Читать этот материал в источнике
Читать этот материал в источнике
В Свердловской области ожидаются сильный ветер с порывами до 20 м/с и метели
Суббота, 9 ноября, 17.52
В Свердловской области на дороги вывели 256 единиц снегоуборочной техники
Суббота, 9 ноября, 17.40
Установлены новые факты хищения миллионов при ремонте военных объектов на Урале
Суббота, 9 ноября, 17.12